SCHEME OF EXAMINATION FOR M.Sc. CHEMISTRY

(One Year Course)

I Spectroscopy, Photochemistry and Computer in Chemistry 100

II Recent Trends in Life Science 100

Elective Pool (Candidate is required to select any one of the following groups):

Group-A

III(a) Advanced Inorganic Chemistry 100

III (b) Metal Complexes and Polymers 100

Group-B

IV(a) Organic Synthesis 100

IV (b) Heterocyclics and Natural Products 100

Group-C

V (a) Recent Trends in Physical Chemistry 100

V(b) Computational Chemistry 100

Group-D

VI(a) Analytical chemistry 100
VI(b) Applied Analytical Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>200</td>
</tr>
<tr>
<td>(Including 25 marks for Seminars)</td>
<td></td>
</tr>
<tr>
<td>Total Marks</td>
<td>600</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1200</td>
</tr>
</tbody>
</table>

Note:-

1- Papers with 100 marks will be taught for four hours/week, with 75 marks for 3 hours/week, with 50 marks for 2 hours/week.

2- Practical (both M.Sc. Previous & Final will cover 24 hours/week).

3- Seminars will be assigned one hour/week for M.Sc. Final Year.

4- Each question paper in the University Examination shall. Consists of five questions of 20 marks each. Each questions shall have an internal choice.

5- **Panel of Examiners** - A panel of Three examiners will conduct Practical examination (for each batch of M.Sc. Previous and Final) among which at least One will be External Examiner.

(a) **Vibrational Spectroscopy** : Symmetry and shapes of AB_2, AB_3, AB_4, AB_5 and AB_6, mode of bonding of ambidentate ligands, ethylenediamine and diketonato complexes, application of resonance Raman spectroscopy particularly for the study of active sites of metallo proteins.

(b) **Ultraviolet and Visible spectroscopy** :

Various electronic transitions (185-800nm), Beer Lambert law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds unsaturated carbonyl compounds dienes, conjugated polyenes. Fieser-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds steric effect in biphenyls.

(c) **Infrared Spectroscopy** : Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehyde, esters amides acids, anhydrides, lactones, lactams and conjugated carbonyl compounds.) effect of hydrogen bonding and solvent effect on Vibrational frequencies, overtones, combination bands and fermi resonance, FTIR, IR of gaseous, solids and polymeric materials.
(d) **Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD)**: Definition, deduction of absolute configuration, Octant rule for ketones.

(e) **Mossbauer spectroscopy**: Basic principles, spectral parameters and spectrum display. Application of the technique to the studies of (1) bonding and structures of Fe$^{+2}$ and Fe$^{+3}$ compounds including those of intermediate spin, (2) 12 Sn and Sn$^{+4}$ compounds - nature of M-L bond, coordination number, structure and (3) detection of oxidation state and in equivalent MB atoms.

Unit-II

(a) **Nuclear magnetic Resonance spectroscopy**: General introduction and definition, chemical shift, spin-spin interaction, shielding mechanism, mechanism of measurement, chemical shift values and correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic) and other nuclei (alcohols, phenols enols, carboxylic acids, amines, amides & mercapto). Chemical exchange effect of deuteration, complex spin-spin interaction between two, three, four and five nuclei (first order spectra,) virtual coupling stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex. Fourier transform technique, nuclear overhauser effect (NOE) Resonance of other nuclei-F,P.

(b) **Nuclear Magnetic Resonance of Paramagnetic Substances in Solution:**
The contact and pseudo contact shifts, factors affecting nuclear relaxation, some application including biochemical systems, an overview of NMR of metal nuclides with emphasis on ^{195}Pt and ^{119}Sn NMR.

(c) **Carbon-13 NMR Spectroscopy**: General consideration: chemical shift (aliphatic olefinic, alkyne, aromatic, hetero aromatic acid carbonyl carbon) coupling constants.

Two dimensional NMR spectroscopy - COSY, NOESY, DEPT, INEPT, APT and INADEQUATE techniques.

(d) **Electron Spin Resonance Spectroscopy**: Hyperfine coupling, spin polarization for atoms and transition metal ions, spin-orbit coupling and significance of g-tensors, application to transition metal complexes (having one unpaired electron) including biological systems and to inorganic free radicals such as pHF_2 and [BH$_3$]

Unit-III

(a) **Photochemical Reactions**: Interaction of electromagnetic radiation with matter, types of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry.

(b) **Determination of Reaction Mechanism**: Classification, rate constants and life times of reactive energy state- determination of rate constants of reactions.
Effect of light intensity on the rate of photochemical reactions. Types of photochemical reactions-photo dissociation, gas phase photolysis.

(c) **Photochemistry of Carbonyl compounds:** Intramolecular reactions of carbonyl compounds- saturated, cyclic and acyclic β,γ- unsaturated and α,β- unsaturated compounds, Cyclohexadienones.

 Intermolecular cycloaddition reactions-determinations and oxetane formation.

(d) **Photochemistry of Alkenes :** Intra molecular reactions of olefinic bond geometrical isomerism, cyclisation reactions, rearrangement 1,4, and 1,5 diens.

Unit-IV

(a) **Photochemistry of Aromatic Compounds :** Isomerisations, additions and substitutions.

(b) **Miscellaneous Photochemical Reactions :** Photo- Fries reactions of anilides. Photo-fries rearrangement.

(c) **Solid State Reactions :** General principles, experimental procedures, co-precipitation as a precursor to solid state reactions, kinetics of solid state reactions.

(d) **Organic Solids :** Electrically conducting solids, organic charge transfer complex, organic metals, new superconductors.
(e) Mass spectrometry: Introduction, ion production- EI, CI, FD and FAB factors affecting fragmentations, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak, McLafferty rearrangement. Nitrogen rule, High resolution mass spectrometry. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Unit-V

Programming in Chemistry: Development of small computer codes involving simple formulae in chemistry, such as Van der Waal equation, PH titration, kinetics, radioactive decay (half life and average life) determination of Normality. Molarity and Molality of Solutions. Evaluation of electronegativity of an atom and lattice energy and ionic radii from experimental data. Linear simultaneous equations to solve secular equations within the Huckel theory. Elementary structural features such as bond lengths. Bond angles, dihedral angles etc. of molecules. Extracted use of computer programmes from data base such as Cambridge Data Base.

Use of Computers Programmes: Operations of PC. Data Processing. Running of standard programs and packages such as MS WORD, MS EX-CEL- special emphasis on calculations and chart formation. X-Y plot. Simpson’s Numerical Integration method. Programmes with data preferably from physical
chemistry laboratory. Introduction of working of any one of the packages such as LOTUS/EXCEL/FOXPRO/MOPAC and Word Processing software such as WORDSTAR/MS WORD.

Book Suggested:

1- Physical Methods for Chemistry, R.S. Drago, Saunders Company.

3- Infrared and Raman spectra : Inorganic and coordination compounds K Nakamoto Iley.

6- Inorganic Electronic Spectroscopy, A.P.B. Lever, Elsevier

7- NMR, NQR, EPR and Mossbauer Spectroscopy in inorganic chemistry, R.v. Parksh, Ellis Horwood.

8- Practical NMR Spectroscopy, M.L. Martin Heyden.

 Tata McGraw Hill.
14- Essentials of Molecular Photochemistry, A. Gilbert and J. baggott, Blackwell

 Scientific Publication.
15- Molecular Photochemistry, N.J. Turro, W.A. Bejamin.

 press.
20- Principles of the Solid, H.V. Keer, Wiley eastern.

PAPER-II CH-502: RECENT TREND IN LIFE SCIENCES

UNIT-I

(a) **Metal Ions in Bilogical Systems**: Essential and trace metals.
(b) Na+/K+ Pump Role of metals ions in biological processes
(c) **Bioenergetics and ATP Cycle:** DNA Polymerisation, glucose storage, metal complexes in transmission of energy, chlorophylls photo system I and photo system II in cleavage of water. Model systems.

(d) **Transport and Storage of Dioxygen:** Heme proteins and oxygen uptake structure and function of hemoglobin; myoglobin hemocyanins and hemerythrin model synthetic complexes of iron, cobalt and copper.

Unit-II

(a) **Electron Transfer in Biology:** Structure and function of metalloproteins in electron transport process – cytochromes and ion-sulphur proteins, synthetic models.

(b) **Enzymes:** Introduction and historical perspective, chemical and biological catalysis, remarkable properties of enzyme like catalytic power, specificity and regulation. Nomenclature and classification, extraction and purification. Fischer’s lock and key and Koshland’s induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labelling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michaelis Menten and lineweaver-burk plots, reversible and irreversible inhibition.

(c) **Mechanism of enzyme Action:** Transition – State theory, orientation and steric effect, acid- base catalysis, covalent catalysis, strain or distortion. Example
of some typical enzyme mechanisms for chymotrypsin, ribonuclease, lysozyme and carboxypeptidase A.

Unit-III

(a) **Kinds of Reactions Catalysed by Enzymes** : Nucleophilic displacement on phosphorus atoms, multiple displacement reactions and the coupling of ATP cleavage to endergonic process. Transfer of sulphate, addition and elimination reactions, enolic intermediates in isomerization reactions, b-cleavage and condensation, some isomerization and rearrangement reactions. Enzymes catalyzed carboxylation and decarboxylation.

(b) **Co-Enzyme Chemistry** : Co factors as derived from vitamins, coenzymes prosthetic groups, apoenzymes. Structure and biological functions of coenzyme A, thiamine pyrophosphate, pyridoxal phosphate, NAD+, NADP+, FMN, FAD, lipoic acid, vitamin B12. Mechanisms of reactions catalyzed by the above cofactors.

(c) **Enzyme Models** : Host–guest chemistry, chiral recognition and catalysis, molecular recognition, molecular asymmetry and prochirality, Biomimetic chemistry, crown ethers, cryptates, cyclodextrins, cyclodextrin based enzyme models, calixarenes, ionophores, micelles, synthetic enzymes or synzymes.

(d) **Biotechnological Application of Enzymes** : Large-Scale production and purification of enzymes, techniques and methods of immobilization of enzymes, effect of immobilization of enzyme activity, application of immobilized enzymes.
Use of enzymes in food and drink industry-brewing and cheese making syrups from corn starch enzymes as targets for drug design. Clinical uses of enzymes, enzyme therapy, enzymes and recombinant DNA technology.

Unit-IV

(a) **Biological cell and its Constituents**: Biological cell, structure and functions of proteins, enzymes, DNA and RNA in living systems. Helix coil transition.

(b) **Bioenergetics**: Standards free energy change in biochemical reactions exergonic, endergonic, Hydrolysis of ATP, synthesis of ATP from ADP.

(c) **Statistical Mechanics in Biopolymers**: Chain configuration of macromolecules, statistical distribution end to end dimensions, calculation of average dimensions for various chain structure. Polypeptide and protein structures, introduction to protein folding problem.

(d) **Biopolymer interactions**: Forces involved in biopolymer interactions. Electrostatic charges and molecular expansion hydrophobic forces, dispersion force interactions. Multiple equilibria and various types of binding processes in biological systems. Hydrogen ion titration curves.

Unit-V

(a) **Thermodynamics and Biopolymer Solutions**: Thermodynamics of biopolymer solutions, osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system.
(b) **Cell Membrane and Transport of Ions**: Structure and functions of cell membrane, ion transport through cell membrane, irreversible thermodynamic treatment of membrane transport Nerve conduction.

(c) **Biopolymers and their Molecular Weights**: Evaluation of size, shape, molecular weight and extent of hydration of biopolymers by various experimental techniques. Sedimentation equilibrium, hydrodynamic methods, diffusion, sedimentation velocity, viscosity, electrophoresis and rotational motions.

(d) **Diffraction Method**: Light scattering, low angle X-ray scattering, X-ray diffraction and photo correlation spectroscopy. ORD

Books Suggested:

9- Immobilized Enzymes An Introduction and Application in Biotechnology, Michael D. Trevan, John wiley.
16- Biochemistry, J. David Rawn, Neil Patterson.
17- Biochemistry, Voet and Voet, John wiley.
ELECTIVE PAPERS

Group-A

PAPER : III-A CH-503 ADVANCED INORGANIC CHEMISTRY

Unit-I

(a) Alkyls and Aryls of Transition Metals: Types, routes of synthesis, stability and decomposition pathways, organocopper in organic synthesis.

(b) Compounds of Transition Metal- Carbon Multiple Bonds: Alkylidenes, aklylidynes, low valent carbenes and carbines- synthesis, nature of bond, structural characteristics, nucleophilic reactions on the ligands, role in organic synthesis.

(c) Transition Metal Compounds with Bonds of Hydrogen.

Unit-II

(a) Transition Metal π- Complexes: Transition Metal π -complexes with unsaturated organic molecules, alkenes, alkynes, allyl, diene, dienyl, arene and trienyl complexes preparations, properties, nature of bonding and structural features, important reactions relating to nucleophilic and electrophilic attack on ligands and to organic synthesis.

(b) Metal in Medicine: Metal deficiency and disease, toxic effects of metals, metals used for diagnosis and chemotherapy with particular reference to anticancer drugs.
Unit-III
(a) **Homogenous Catalysis:** Stoichiometric reactions for catalysis, homogeneous catalytic hydrogenation, Zeigler- Natta polymerization of olefins, catalytic reactions involving carbon monoxide such as hydrocarbonylation of olefins (oxo reactions), oxopalladation reactions, activation of C-H bond.

(b) **Fluxional organometallic compounds:** Fluxionality and dynamic equilibria in compounds such as t2 –olifin,t3- allyl and dienyl complexes

Unit-IV
(a) **Metalloenzymes:** Zn enzymes-Carboxypeptidase and carbonic anhydrase. Iron enzyme catalase, peroxidase and cytochrome P-450

 Copper enzyme –superoxide dismutase. Molybdenum oxatransferase enzyme
 anthine oxidase. Coenzyme vitamin B12 .

(b) **Metal storage transport and biomineralisation:** Ferritin ,Transferrin and siderophores.

Unit-V
Supramolecular Chemistry: Concepts and language.

(a) **Molecular recognition:** Molecular receptors for different types of molecules including anisonic substrates, design and synthesis of coreceptor molecules and multiple recognition.

(b) **Supermolecular reactivity and catalysis.**
(c) Transport processes and carriage design.

(d) Supramolecular devices supramolecular photochemistry, supramolecular electronic, ionic and switching devices.

Books Suggested:

2- The Organometallic chemistry of the Transition Metals, R.H. Crabtree John Wiley.

9- Supramolecular Chemistry, J.M. Lehn, VCH
Group-A

PAPER : III B CH-504 METAL COMPLEXES AND POLYMERS

Unit-I

(b) **Properties of Excited States**: Structure, dipole moment, acid-base strengths, reactivity. Photochemical kinetics, calculation of rates of radiative processes. Bimolecular deactivation- quenching.

(c) **Excited states of Metal Complexes**: Excited states of metal complexes, Comparison with organic compounds, electronically excited states of metal complexes, charge – transfer spectra, charge transfer excitations, methods for obtaining charge – Transfer spectra.

Unit-II

(a) **Redox Reaction by Excited Metal complexes**: Energy transfer under condition of weak interaction and strong interaction- exciplex formation; conditions of the excited states to be useful as redox reactants, excited electron transfer, metal complexes as attractive candidates (2, 2’ bipyridine and 1, 10
phenanthroline complexes), illustration of reducing and oxidizing character of Ruthenium 2 (bipyridal complex, comparison with Fe (bipy)$_3$ role of spin orbit coupling life time of these complexes. Application of redox processes of electronically excited states for catalytic purpose, transformation of low energy reactants into high energy products, chemical energy into light.

(b) **Metal complex sensitizers**: Metal complex sensitizer, electron relay, metal colloid system, semiconductor supported metal or oxide system, water photolysis, nitrogen fixation and carbon dioxide reduction.

Unit-III

(a) **Basics of polymers**: Importance of polymers, basic concepts, monomers, repeat units, degree of polymerization. Linear branched and network polymers, classification of polymers. Polymerization: condensation, addition, radical chain – ionic and co-ordination and co-polymerization. Polymerization conditions and polymer reactions. Polymerization in homogeneous and heterogeneous systems.

(b) **Polymer characterization**: polydispersion – average molecular weight concept. Number, weight and viscosity average molecular weights Polydispersity and molecular weight distribution. The practical significance of molecular weight measurement of molecular weights. End-group, viscosity light scattering, osmotic and ultracentrifugation methods, X-ray diffraction study Microscopy. Thermal
analysis and physical testing – tensile strength. Fatigue, impact. Tear resistance. Hardness and abrasion resistance.

Unit-IV

(a) **Structure and Properties**: Morphology and order in crystalline polymers – configurations of polymer chains. Crystal structure of polymers. Morphology of crystalline polymers, strain induced morphology, crystallization and melting polymer structure and physical properties – crystalline melting point. Tm Melting points of homogeneous series, effect of chain flexibility and other steric factors, entropy and heat of fusion. The glass Transition temperature, Tg- Relationship between Tm and Tg. Effects of molecular weight diluents, chemical structure chain topology, branching and cross linking property requirements and polymer utilization.

(b) **Polymer processing**: Plastic elastomers and fibres. Compounding processing techniques calendaring, die casting rotational casting, film casting, injection molding, blow molding, extrusion molding, thermoforming, foaming, reinforcing and fiber spinning.

Unit-V

Properties of Commercial Polymers: Polyethylene, polyvinyl chloride polyamides, polyesters, phenolic resins, epoxy resins and silicone polymers. Functional polymers- fire retarding polymers and electrically conducting polymers.
Biomedical polymers- contact lens. Dental polymers, artificial heart, kidney, skin and blood cells.

Books Suggested:

1- Concepts of inorganic photochemistry, A.W. Adamson and P.D. Fieischauder, Wiley.

3- Progress in inorganic chemistry, vol 30 ed, s.J. Lippard wiley.

5- Photochemistry of Coordination Compounds, V. Balzari and V. Carassiti Academic press.

6- Elements of inorganic photochemistry, G.J. Willey.

7- Textbook of polymer Science, FW Lamba, Prentice Hall

8- Physical and Chemistry of polymers, J.M.G. cowie, Biackles Academic and Professional.

9- Functional monomers and polymers, K. Takemoto, Y. Inaki and RM Ottanbrite.

Unit-I

Organometallic Regents: Principles, preparations, properties and applications of the following in organic synthesis with mechanistic details.

(a) Group I and II Metal organic compounds: Li, Mg, Hg, Cd, Zn, and Ce compounds

(b) Transition Metals: Cu, Pd, Ni, Fe, Co, Rh, Cr, and Ti compounds

Unit-II

(a) Oxidation: Introduction, different oxidative processes. Hydrocarbons – Alkenes aromatic rings, saturated C-H groups (activated and unactivated)
Alcohols, diols, aldehydes, ketones and carboxylic acids Amines, hydrazines and sulphides. Oxidations with Ruthenium tetraoxide, Iodobenzene diacetate and Thallium (III) nitrate.
(b) **Reduction**: Introduction, different reduction processes. Hydrocarbons- Alkanes, alkenes, alkynes and aromatic rings. Carbonyls compounds- aldehydes, ketones, acids and their derivatives, Expoxides.

Nitro, Nitroso, Azo and oxime groups. Hydrogenolysis.

(c) **Rearrangements**: General mechanistic considerations – nature of migration, migratory aptitude. Memory, effects. A detailed study of the following rearrangements- Pinacol- pinacolone, Wagner- Meewein, Damjanov, Benzil-Benzilic acid, Favorskii, Arndt- Eistert synthesis, Neber, Beckmann, Hofmann, Curtius Schemidt, Baeyer- Villager, Shapiro reaction. Metallocenes, non Benzenoid aromatics and Polycyclic Aromatics compounds general considerations, synthesis and reactions of some representative compounds.

Unit-III

(a) **Disconnection Approach**: An Introduction to synthons and synthetic equivalents, disconnection approach, functional group inter-conversions, the importance of the order of events in organic synthesis, one group- C-X and two group C-X disconnections, chemoselectivity reversal of polarity, cyclisation reactions, amine synthesis.

(b) **Protecting groups**: Principles of protection of alcohol, amine ,carbonyl and carboxyl groups.

Unit-IV
(a) **One groups C-C disconnections** : Alcohols and carbonyl compounds, regioselectivity, alkene synthesis, uses of acetylenes and aliphatic nitro compounds in organic synthesis.

(b) **Two group C-C disonnections** : Diels – Alder reaction, 1-3 difunctionalised compounds, alpha & beta unsaturated carbonyl compounds, control in carbonyl condensations, 1,5- difunctionalised compounds, Micheal addition and Robinson annulation.

(c) **Ring Synthesis** : Saturated heterocycles, synthesis of 3-,4-, 5- and 6-membered rings aromatic heterocycles in organic synthesis.

Unit-V

Synthesis of Some Complex Molecules : Camphor, Longifoline, cortisons, reserpine, vitamin D, Juvabione, Aphidicolin and Fredericamycin A.

Books Suggested :

1- Modern Synthetic Reactions, H.Q. House, W.A. Benjamin.

2- Some moder Methods at organic synthesis, W, Carruthers, Cabrige Uni.t press.

3- Avanced Organic Chemisty reactions mechanisms and structure J marrcj John Wiley.

6- Rodd’s chemistry carbon compounds, ed S. coffey, Elsevier.

7- Designing organic synthesis S Warren Wiley.

8- Organic synthesis – concepts, methods and starting, material J funrhop and G. Penzillin, vertage VCh.

10- Modern synthesis reactions, H.Q. house W.A.A. Benjamin.

11- Advanced organic chemistry readctions, Mechanisms and structure, March Willy

12- Principle of organic synthesis, R h Norman and J.M Cozon, Blackie academic & professional.

Group-B

Paper-IV-B CH-506 Heterocyclics and Natural Products

Time : 3 Hours

Max. Marks : 100

Unit-I
(a) **Nomenclature of Heterocycles** : Systematic nomenclature (Hantzsch – Widman system) for monocyclic, fused and bridged heterocyclics.

(b) **Aromatic Heterocycles** : General chemical behaviour of aromatic heterocycles, classifications (Structural type), criteria of aromaticity (bond lengths, ring current and chemical shifts in H NMR- spectra, empirical resonance energy, delocalization energy and Dewar resonance energy, diamagnetic susceptibility exaltations).

(c) **Non aromatic Heterocycles** : strain in bond angle and torsional strain and their consequences in small ring heterocycles.

Conformation of six-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion and 1,3- dixial interaction.

Stereo-electronic effects, anomeric and related effects. Attractive interaction hydrogen bonding and intermolecular nucleophilic electrophilic interactions.

(d) **Heterocyclic Synthesis** : Principles of heterocyclic synthesis involving cyclization reaction and cycloaddition reactions with reference to synthesis and reactions of aziridines, oxiranes, thiranes, azetidines, oxetanes and thietanes.

Unit-II
(a) **Benzo- Fused Five Membered Heterocycles** : Synthesis and reactions including medicinal applications of benzopyrroles, benzofuranes and benzothiophenes.

(b) **Seven- and large membered Heterocycles** : synthesis and reactions of diazepines, thiazepines, azocines, diazocines, dixocines and dithiocine.

Unit-III

(a) **Five membered heterocycles with one & two heteroatoms** : Synthesis & reactions of Pyrrole, thiophene, furan, pyrazole, imidazole, oxazole and thiazole.

(b) **Terpenoids and Carotenoids** : Classification, nomenclature, occurrence, isolation, general methods of structure determination, isoprene rule.

Structure determination, stereochemistry, biosynthesis and synthesis of the following representative molecules : Citral, Geraniol, ? terpeneol, Menthol, Zingiberene, Santonin and β-cotene.

Unit-IV

(a) **Alkaloids** : Definition, nomenclature and physiological action, occurrence isolation, general methods of structure elucidation, degradation classification based on nitrogen heterocyclic ring, role of alkaloids in plants.

Structure, stereochemistry, synthesis and biosynthesis of the following : Ephedrine, (+)- coniine, nicotine, atropine quinine and morphine.

(b) **Porphyrins** : structure an synthesis of hemoglobin and chlorophyll.
Unit-V

(a) **Steroids**: Occurrence, nomenclature, basic skeleton, Diel’s hydrocarbon and stereochemistry.

Isolation, structure determination and synthesis of cholesterol, bile acids, androsterone, estrosterone, estrone, progesterone, aldosterone. Biosynthesis of steroids.

(b) **Plant pigment**: Occurrence, nomenclature and general methods of structure determination, isolation and synthesis of quercetin and myrcetin.

Books Suggested:

14- Heterocyclic chemistry Vol, 1-3, R.R. Gupta, M. Kumar and V. Gupta springer Verlag.

15- The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, thieme.

18- Contemporary Heterocyclic compounds, R.M. Acheson, John Wiley.

19- An introductoni to the Heterocyclic compounds R.M. Acheson, John Wiley.

23- Stereoselective synthesis : A practical Approach, M. Nogradi, BCH.

24- Rodd’s Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.

Group-C

PAPER-V-A CH- 507 RECENT TRENDS IN PHYSICAL CHEMISTRY

Time : 3 Hours

Max. Marks : 100

Unit-I

(a) **Concept in molecular orbital (MO) and Valence Bond (VB) Theory :**

Introduction to Huckel Molecular orbital (MO) method as a means to explain modern theoretical methods. Advanced techniques in PMO and FMO theory.
Molecular mechanics, semi empirical methods and ab initio and density functional methods. Scope and limitations of several computational programmes.

(b) Principle of Reactivity : Mechanistic significance of entropy, enthalpy and Gibb’s free energy, Arrehenius equation. Transition state theory, uses of activation parameters, Hamond’s postulate, Bell Evans- Polanyi principles. Potential energy surface model, Marcus theory of electron transfer reactivity and selectivity principles.

(c) Kinetic Isotope Effect : Theory of isotope effects, primary and secondary kinetic isotope effects. Heavy atom isotope effects. Tunnelling effect, solvent effects.

(d) Structural effects on reactivity : Linear free energy relationships (LFER). The Hammett equation, substituent constant, theories of substituent effects.
Interpretation of δ Values, reaction constant γ. Deviation from Hammett equation, Dual parameter correlations, inductive substituent constant. The Taft model, s_1 and s_R scale.

Unit-II

(a) **Solvation and solvent Effects**: Qualitative understanding of solvent solute effects on reactivity. Thermodynamic measure of salvation. Effects of salvation on reaction rates and equilibria. Various empirical index of solvation based on physical properties, solvent-sensitive reaction rates, spectroscopic properties and scale for specific solvation. Use of solvation scales in mechanistic studies, Solvent effects from the curve crossing model.

(c) **Steric and Conformational properties**: Various type of steric strain and their influence on reactivity. Steric acceleration. Molecular measurements of steric effects upon rates. Steric LFER. Conformational barrier to bond rotation
spectroscopic detection of individual conformers. Acyclic and monocyclic systems.

Rotation around partial double bonds. Winsetein-Holness and Curtin-Hammett Principle.

Unit-III

(a) **Radical and Pericyclic Reactivity:** Radical stability, polar influences, solvent and steric effect. A curve crossing approach to radical addition, factors effecting barrier heights in additions, regioselectivity in radical reactions.

Reactivity, specificity and periselectivity in pericyclic reactions.

(b) **Supramolecular chemistry:** Properties of covalent bonds, bond length, interbond angles, force constant, bond and molecular dipole moments, molecular and bond polarizability, bond dissociation enthalpy, entropy, intermolecular forces, hydrophobic effects electrostatic induction, dispersion and resonance energy. Magnetic interactions, magnitude of interaction energy, forces between macroscopic bodies, medium effects. Hydrogen bond.

Principles of molecular association and organization as exemplified in biological macromolecules like enzymes, nucleic acids membranes and model systems like micelles and vesicles. Molecular receptors and design principles, cryptands, cyclophanes calixerances, cyclodextrines. Supramolecular reactivity and
catalysis. Molecular channels and transport process. Molecular devices and nanotechnology.

(d) **Theory of liquid**: Theory of liquids partition function method or model approach single cell models communal energy and entropy. LTD model, significant structure model.

Unit-IV

(a) **General properties of Liquids**-

 (i) Liquids as dense gases, liquids as disordered solids, some thermodynamics relations, internal pressure and its significance in liquids. Equation of state, critical constants. Different types of intermolecular forces in liquids, different potential functions for liquids, additivity of pair potential approximation.

 (ii) A classical partial function for liquids, correspondence principle, configuration integral configuration properties.

(b) **Methods for Structure Determination and Computational Techniques**-

 Spectroscopic technique for liquid ceramic structure studies, neutron and X-ray scattering spectroscopy.

 Computation techniques – monte carlo and molecular dynamics methods.

Unit-V
(a) **Distribution Functions and Related equation**: Radial distribution function method, equation of state in terms of RDF. Molecular distribution functions, pair distribution function. Relationship between pair distribution function and pair potential function. The IBG equation, the HNC equation, the PY equation, cluster expansion.

(b) **Supercooled and Ionic Liquids**: Super cooled and ionic liquids theories of transport properties: non Arrehnius behaviour of transport properties non Arrehnius behaviour of transport properties cohen truhbull free volume model, configurational entropy model, macedo litovitz hybrid model, glass transition in super cooled liquids.

Book Suggested:

1- Molecular Mechanics, U burkert and N.L. Allinger, ACS Monograph 177, 1982.

4- Introduction to Theroretical Organic Chemistry and Molecular. Modeling, W.B. Smith, VCH Weinheim.
5- Physical Organic Chemistry, N.S. Lssacs, ELBS/Longman.

6- Supramolecular Chemistry, Concepts and Persopective, JM Lehn, VCH.

8- An intoductino to Liquied State, P.A. Egelstaff, Academica Press.

9- The Dynamic State, A.F.M. barton, Longman.

10- Introduction to Statical Themodynamics T.L. Hill Addison Wiley.

11- The Liquid State, J.A. Pryde.

12- Significant Liquid Structures, H. eyrine and M.S. John

Group-C

CH-508 PAPER :V-B COMPUTATIONAL CHEMISTRY

Time : 3 Hours

Max. Marks : 100

Unit-I

Fortran / Programming and Numerical Methods : Advanced programming features of FORTRAN /C. Basic theory, discussion of algorithms and errors for the following numerical methods. Examples from chemistry should be selected for illustrating the methods. The teacher may select ANY THREE of the following subtopics considering the background of students, available time etc.

(i) **Solution Equations :** Bisection, regular falsi, Newton- Raphson and related methods for solving polynomial and transcendental equations convergence. Errors and III- conditioning
(ii) **Linear Simultaneous Equations** : Gaussian elimination, gausseidel method gauss-jordan method. Pivoting strategy. Errors and ill conditioning.

(iii) **Eigenvalues and Matrix Diagonalization** : Jacobi and Householder methods, analysis or errors.

(iv) **Interpolation** : Newton forward and backward difference, central differenced formulae. Lagrange and Hermite interpolation, polynomial wiggle problem.

(v) **Numerical differentiation** : Solutions of simple differential equation by Taylor series and Runge-Kutta methods.

(vi) **Numerical integration** : Newton-Cotes formulae, Romberg integration, errors in integration formulae.

(vii) The students should develop computer programs for some of the above numerical methods.

Unit-II

(a) **Running of Advanced scientific Packages** : The students are expected to get hands on experience of running a few selected advanced level scientific software package after a brief introduction to the basic theory and methodology. Ab initio quantum chemical packages such as GAUSSIAN/ GAMES with carefully designed exercise for illustrating various features of the packages. Semi-empirical / Dynamic / simulation packages such as MOPAC, CHARM, AMBER, QUANTA etc. Basic ideas on structure activity relating drug and catalysis design etc.
(b) **Computer Experiments**: Computer experiments using quantum chemistry – software packages such as GAUSSIAN, GAMESS, MOPAC and modeling software e.g. MM2/AMBER/CHARAM etc.

Unit-III

(a) **Introduction to networking and Search Using Internet.**

(b) **Computer applications on Chemistry**: Development of small computer codes involving simple formula in Chemistry such as Vander Waal’s equation, pH titration, kinetics, radioactive decay. Evaluation of lattice energy & ionic radii from experimental data. Linear simultaneous equations to solve secular equations with in the Huckel theory, Elementary structural features such as bond lengths, bond angles, dihedral angles etc. of molecules extracted from a database such as Cambridge data base. Execution of linear regression, x-y plot, numerical integration & differentiation as well as differential equation solution programmes with data preferably from physical chemistry laboratory.

Unit-IV

(a) **Theoretical and Computational Treatment of Atoms and Molecules, Hartree-Fock theory.**

Review of the principles of quantum mechanics, Born- Oppenheimer approximation. Slateer- Condon rules, hartree- fock equation, koopmans and brillouin theories roothan equation, Gaussian basis sets.
(b) **Configuration Interaction and MC-SCF**

Introduction to CI; Full and truncated CI Theories size consistency introductory treatment of coupled cluster and MC-SCF methods.

Unit-V

(b) **Density functional theory** : Derivation of Hohenberg- Kohn theorem, kohn- sham formulation, N- and V- representabilities; review of the performance of the existing local (e.g. slater Xa and other methods) and non local functions, treatment of chemical concepts with the density functional theory.

Book Suggested :

1- Computational Chemistry, A.C. Norris, John Wiley.

2- Computer Programming in FORTRAN 77, R Rajasthan, Prentice Hall.

3- Numerical Analysis, CE. Frogberg, Macmillan.

4- Numerical Analysis-A Practical Approach, M.J. Meron, John Wiley.

5- Numerical Methods for scientists and Engineers H.M. Antia Tat Mcgrow Hill.

6- Modern Quantum Chemistry N.S. Ostlund and A. Szabo, McGraw Hill.
7- Methods of Molecular Quantum Mechanics, R. Mcweeny and B.T. Sutcliffe, academic Press.

9- Exploring Chemistry with Electron Structure Methods, JB. Foresman and E. Frish Goussian Inc.

Group-D

PAPER : VI-A CH- 509 ANALYTICAL CHEMISTRY

Time- 3Hrs. Max. Marks-100

UNIT-I

General consideration in analysis-

(a) Instrumental Methods- Classification of techniques, important consideration, measurement of data sensitivity and detection limit, Noise, Signal to noise ratio, Accuracy and instrument calibration, Evaluation results by statistical methods.

(b) Computer Aided Analysis: Computer organization -Software & Hardware, interfacing computers in instruments.
(c) Process control & Laboratory Analyzer: Industrial process analyzers - Infrared, Oxygen, potentiometric and gas-chromatographic, online process control, Automatic chemical analyzer and element (C,H,N,O) analyzer.

UNIT-II

Spectral methods of Analysis-
(a) Raman Spectroscopy - Theory, Instrumentation, experimental technique and structural analysis.
(b) Infrared Spectroscopy, Sample handling, Instrumentation, experimental technique, qualitative and quantitative analysis, FT-IR & NIR.
(c) Mass-Spectrometry:- Mass spectrometry, Sample flow, inlet sample system, ionization methods, mass analyzers, ion-collection system, experimental technique and correlation of Mass spectra with molecular structure.
(d) X-Ray Spectra:- Instrumentation, experimental technique of X-Ray analysis – Direct, X-ray Diffraction (XRD), Absorption (XRA) & Fluorescence (XRF)
(e) Electron Microscopy: Types (TEM, SEM, REM and LVEM), sample preparation and application in life sciences, industries and research Scanning and Transmission Electron Microscopy

UNIT-III

Spectrophotometric Methods:-
(a) UV-Vis Spectrophotometry: Theory, instrumentation, experimental technique for determination, differential and derivative spectroscopy, photometric titrations.
(b) Fluorescence & Phosphorescence Spectrophotometry: Basic principles, instrumentation, experimental technique and important application.
(c) Atomic Absorption and Flame Emission Spectroscopy (AAS & FES): Elementary theory, Instrumentation for atomic absorption & Reame emission spectroscopy, experimental technique and important applications. Comparison of AAS & FES.
(d) Fluorimetry, Nephelometry & Turbidimetry: Basic principles, instrumentations, experimental technique & important applications.

UNIT-IV

Chromatography: Basic principles, Instrumentation, experimental technique and important application of following-
(a) Thin layer chromatography (TCL), paper, column, Ion-Exchange chromatography
(b) Gas Chromatography (GC), Gas Liquid Chromatography (GLC), High performance liquid chromatography (HPLC).

UNIT-V

Ceramic analysis and Instrumentation
(a) Description and classification of various minerals based on their chemical compositions, Physical properties and occurrence.

(b) Study in detail of raw materials used in glass, Refractories, White wares, Potteries and Cement

(c) Chemical characteristic of raw materials of alkali and alkaline earth elements, Silica, Silicates, Alumina, Aluminates, Titania, Zirconia and and zircon, Chromatography : Introduction, Paper and thin layer chromatography, Liquid chromatography, Types of liquid chromatography, Column and detection systems. Differential thermal analysis (DTA) and thermo gravimetric analysis (TGA) with suitable examples.

Books Suggested :

3- Analytical Chemistry – Principles, J.H. Kennedy, W.B. Saunders.

4- Analytical chemistry – Principles and techniques, LG. Hargis, Prentice Hall.

5- Principles of Instrumental Analysis, D.A. Skoog, J.L. Loary, W.B. Saunders.

6- Principles of Instrumental Analysis, D.A. Skoog, W.B. Saunders.

(a) **Pharmaceutical Analysis**: Introduction to drugs, their classification, sources of impurities in pharmaceutical raw materials such as chemical, atmospheric and microbial contaminants etc. Limit tests for impurities like, Pb, As, Fe, moisture, chlorides, sulfates, Boron, free halogen, selenium etc. Analysis of some commonly used drugs like sulfad Drugs, antihistamines, barbiturates, vitamins (A, B6, C, E, K) etc.

(b) **Clinical Analysis**: Composition of blood, collection, and preparation of samples, clinical analysis – serum electrolytes, blood glucose, blood urea nitrogen, uric acid, albumin, globulin, barbiturates, acidic and alkaline phosphates, Immunoassay, principals of radio immunoassay, and applications. The blood gas analysis – trace elements in the body. Drug analysis: Narcotics and dangerous drugs, classification of drugs, screening by gas and thin layer chromatography and spectrophotometric analysis.
Unit-II: Analysis of soil, fertilizers and Fuels

(a) Analysis of soil and fertilizers: Moister, pH, total nitrogen, phosphorous, silica, lime, Magnesia, Manganese, sulfur & alkali salts. Method of soil analysis, soil fertility its determination, determination of inorganic constituents of plant materials, Chemical analysis as measure of soil fertility, analysis of fertilizers.

Unit-III: Environmental Analysis

(a) Environment - its characteristics and Classification: Metallic and non-metallic pollutants, Cr, Hg, Pb,Cd,Cu,As etc. Their physiological manifestation, source, analysis and control of inorganic compounds. Chemistry of Air pollutants, Characterization. Source, methods of analysis of air pollutants ; CO,CO2, NOX,NH3,H2S,SO2,etc. Monitoring Instruments, Potable and Industrial water, major and minor components, dissolved oxygen(DO) Chemical oxygen demand(COD) Biochemical oxygen demand(BOD) and their measurements and significance in waste water treatments, Threshold odour number.
(b) Industrial waste Water analysis for organic and Inorganic Constitutents:
Chemistry of odour and its measurements Seweage and sludge analysis. Treatment, disposal and source of phenolic residue, Analytical methods, treatment by using stream. Gas stripping, ion exchange, solvent extraction, oxidation method and microbiological treatment.

Unit-IV Food and Forensic Analysis

(a) Food analysis: Moister, ash, crude protein, fat, crud fiber, carbohydrate, calcium, potassium, sodium, and phosphates, food adulteration – common adulteration in food, contamination of food stuffs, microscopic examination of foods for adulterants, Pesticide analysis in food products, Extraction and purification of sample, HPLC, gas chromatography for organo – phosphates, thin layer chromatography for identification of chlorinated pesticides in food products.

(b) Special features of Forensic analysis:- sampling, sample storage, sample dissolution,
classification of poisons, Lethal dose, significance of LD 50 and LC 50.

Unit -V Organic Industrial Analysis:-

(a) Analysis of oils, fats, soaps and detergents: Introduction to natural fats and oils, Analysis of oils and fats: Softning point, Congent point, Titre point, cloud
point, Iodine, Saponification, acid, hyroxyl, R-M and Polenske value, Elaiden test. Introduction to soaps, analysis of soap (saponifiable, unsaponifiable) and for unsaponified matter in soaps, Estimation of free alkali and phenol in soap. Classification of detergents (in Brief): Analysis of active ingredients from detergents (methylene blue and Hyamine-1622 method); Estimation of CMC, Chlorides, total phosphates etc.

(b) Analysis of dyes and paints: Types of dyes, and their analysis. Composition and analysis of paints, determination of volatile and non-volatile constituents, flash points, separation of pigments, estimation of binders and thinners.

Reference Books:

2. I. M. Kolthoff: Treatise on Analytical Chemistry Vol. I & II
4. Riech: Outline of Indutrial Chemistry.
5. K. H. Buchel: Chemistry of Pesticides (John Wiley)
6. Nichollas: Aids to the Analysis of foods and Drugs.
7. A. H. Beckett and J. B. Stanlake; Practical Pharmaceutical Chemistry Vol. I & II (CBS publishers)
8. S. Ranganna: Handbook of analysis and quality control for fruits and vegetable products (McGraw Hill)
9. Ramalu: Analysis of pesticides
12. S.M. Khopkar, Environmental Chemistry; Environmental pollution analysis.
14. A.K. De, Environmental Chemistry, New Age International publishers. Moghe and
15. Ramteke, Water and waste water analysis: (NEERI)
16. A.C. Stern, Air pollution: Engineering control vol.IV (AP)
17. P.N. Cheremisinoff and R.A. Young, Air Pollution control and Design. Hand Book Vol.I&II (Dekker)
18. B.K. Sharma, Industrial Chemistry.

22. Ladd and Lee, Radiochemistry.

23. Clerk, Handbook of Radiochemical methods

25. Snell and Biffen, Commercial Methods of Analysis.

28. Karamer Twig: Quality control for food industry (AVI)

29. G. F. Longonan: the analysis of detergents and detergent products (JW)

30. A. Davidsohn & B. M. Mlwidaky : Synthetic detergents (Book center, Mumbai)

32. Aubert and Pintes, Trace Elements in Soils.

33. Bear, Chemistry of Soil.

34. Hauson, Plant Growth Regulators, Noyes.

M.Sc. (FINAL) CHEMISTRY PRACTICAL, 2018

Time: 14 Hours Max. Marks: 200

(Spread in 2 Days) (Including 25 Marks for Project Work & Seminar)
INORGANIC CHEMISTRY

Preparation of selected inorganic compounds and their study by IR, electronic spectra, Mossbauer, ESR magnetic susceptibility measurements. Handling of air and moisture sensitive compounds involving vacuum lines.

A. Preparation (Any Seven)

3. Atomic absorption analysis of Mg. and Ca.

4. Trialkoxyboranes-Preparation, IR and NMR spectra.

5. PhBCl₂ dichlorophenylborane-Synthesis in vacuum line.

7. Relative stability of Tin (V) and Pb (IV). Preparation of ammonium hexachlorostannate (NH₄)SnCl₆ ammonium hexachloro-plumbate (NH₄)₂PbCl₆.

8. Hexa-bis (4-Nitrophenox cyclotriphosphazene.)

10. Sodium tetrathionate Na₂SO₄O₈.
11. Metal complexes of dimethyl sulfoxide (Li); CuCl, 2 DMSO,

12. Synthesis of metal acetylacetonate, Magnetic moment, IR,

14. Magnetic moment of Cu (acac) 2H₂O.

17. Determination of Cr (III) complexes [Cr(H₂O)₆ NO₃ 3H₂O, [Cr(H₂O)₄

18. Preparation of N. N bis (salicyldehydrate) ethylenediamine, salen H₂, Co (Salen)
 CHCl₃ (deoxygenation).

19. Preparation of Fe (II), chloride (use it as Friedal- Craft chlorination source

20. Reaction of Cr. (III) with a multidentate ligand a kinetics experiments (visible
 spectra Cr-EDTA complex) J.A.C.S., 1953, 75, 5670.

25. Conversion of p-xylene to terephthalic acid catalyzed by CoBr₂ (homogeneous catalysis).

26. Preparation of any other Inorganic Compound of more difficult type.

27. Green Synthesis

(a) Synthesis of fluorescent isomers of tris (8-hydroxyquinolinato) aluminium (III)

(b) Synthesis of Bis (acetylacetanato) Manganese (III)

B. Spectrophotometry

(i) Estimation

c. Fluoride/nitrite/phosphate.
(ii) Determination of Metal Ligand ratio & Stability constant.
 c. Copper-Ethylene diamine complex: Slope-ratio method.

C. **Flame Photometric Determinations (Any Three)**
 a. Sodium and potassium when present together
 b. Lithium/calcium/barium/strontium.
 c. Cadmium and magnesium in tap water.
 d. Sulphate.
 e. Phosphate.
 f. Silver.

D. **Chromatographic Separations (Any Three)**
 a. Cadmium and Zinc.
 b. Zinc and Magnesium
 c. Thin-layer chromatography-separation of nickel, manganese, cobalt and zinc. Determination of Rf values.
 d. Separation and identification of the sugars present in the given mixture of glucose, fructose and sucrose by paper chromatography and determination of Rf Values.

INSTRUCTIONS TO EXAMINERS
Five exercises are to be given, selecting two exercises from section A and One exercise from each section from B to D.

Marking Scheme

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise No. 1 (from section A)</td>
<td>25</td>
</tr>
<tr>
<td>Exercise No. 2 (from section A)</td>
<td>25</td>
</tr>
<tr>
<td>Exercise No. 3 (from section B)</td>
<td>30</td>
</tr>
<tr>
<td>Exercise No. 4 (from section C)</td>
<td>30</td>
</tr>
<tr>
<td>Exercise No. 5 (from section D)</td>
<td>30</td>
</tr>
<tr>
<td>Viva</td>
<td>20</td>
</tr>
<tr>
<td>Record</td>
<td>15</td>
</tr>
<tr>
<td>Seminar & project work</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
</tr>
</tbody>
</table>

Note: Head of the department will award the Project work, seminar marks & will hand over it to the board of examiners.

M.SC. (FINAL) CHEMISTRY PRACTICAL, 2018

Time: 14 Hours Max. Marks: 200

(Spread in 2 Days) (Including 25 Marks for Project Work & Seminar)

ORGANIC CHEMISTRY

Qualitative Analysis

(A) Separation, purification and identification of the components of mixture of three organic compounds (three solids or two liquids and one solid, two solids and
one liquid) using TLC for checking the purity of the separated compounds.

Chemical analysis.

(B) Multi-Step Synthesis of Organic Compounds (Any Four)

The exercise should illustrate the use of organic reagents and may involve purification of the products by chromatography techniques.

a. Photochemical reactions

 Bebzophenone benzpinacol benzpinacolone

b. Beckmann rearrangement : benzanilide from benzene

 Benzene BenzophenoneBenzophenone oxime Benzanilide

c. Benzilic acid rearrangement Benzilic acid from benzoin.

 BenzoinBenzil Benzilic acid

e. Enzymatic synthesis- enzymatic reduction ; Reduction of ethyl acetoacetate using Baker’s yeast to yield enantiomeric excess of S(+) ethyl-3-hydroxybutanoalte and determine its optical purity.

f. Biosynthesis of ethanol from sucrose.

g. Synthesis using microwaves Alkylation of dietyl malonate with benzyl chloride.
h. Synthesis using phase transfer catalyst.

i. Alkylation of diethyl malonate or ethyl acetoacetate with an alkyl halide.

j. Green Synthesis - 1. Solvent free Aldol condensation and 2. Benzoin condensation with thiamine as a catalysts instead of cyanide

NOTE — Other similar synthesis of three steps.

C. Extraction of Organic Compounds from Natural Sources (Any Five)

1. Isolation of caffeine from tea leaves.

2. Isolation of casein from milk (the students are required to try some typical colour reactions of proteins).

3. Isolation of lactose from milk (purity of sugar should be checked by TLC and PC and Rf value reported).

4. Isolation of nicotine dipicrate from tobacco.

5. Isolation of cinchonine from cinchona bark.

6. Isolation of piperine from black pepper.

7. Isolation of lycopence from tomatoes.

8. Isolation of β-carotence from carrots.

9. Isolation of oleic acid from olive oil (involving the preparation of complex with urea and separation of linoleic acid).

10. Isolation of eugenol from cloves.
11. Isolation of (+) limonine from citrus rinds.

D. Spectroscopy

Identification of organic compounds by the analysis of their spectral data (UV, IR, PMR, CMR & MS)

E. Spectrophotometric (UV/VIS) Estimations (Any Three)

1. Amino acids 2. Proteins
3. Carbohydrates 4. Cholesterol
5. Ascorbic acid 6. Aspirin
7. Caffeins

INSTRUCTIONS TO EXAMINERS

Five exercises are to be given, selecting one from each section from A to E.

<table>
<thead>
<tr>
<th>Marking Scheme Exercise</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise No. 1 (from section A)</td>
<td>40</td>
</tr>
<tr>
<td>Exercise No. 2 (from section B)</td>
<td>40</td>
</tr>
<tr>
<td>Exercise No. 3 (from section C)</td>
<td>20</td>
</tr>
<tr>
<td>Exercise No. 4 (from section D)</td>
<td>20</td>
</tr>
<tr>
<td>Exercise No. 5 (from section E)</td>
<td>20</td>
</tr>
<tr>
<td>Viva</td>
<td>20</td>
</tr>
<tr>
<td>Record</td>
<td>15</td>
</tr>
<tr>
<td>Project Work & Seminar</td>
<td>25</td>
</tr>
</tbody>
</table>
Note: Head of the department will award the Project work & seminar marks & will hand over it to the board of examiners.

M.SC. (FINAL) CHEMISTRY PRACTICAL ,2018

Time: 14 Hours Max. Marks: 200

(Spread in 2 Days) (Including 25 Marks for Project Work & Seminar)

PHYSICAL CHEMISTRY

A. Experiments based on Conductivity measurements:

1. Conductometric Titration: Acid-base, Precipitation and complex salts.

2. To determine the equivalent conductance of a weak electrolyte at different concentrations and hence test the validity of Ostwald’s dilutions law. Also determine the dissociation constant of the weak electrolyte.

3. To determine the equivalent conductance of a strong electrolyte at several dilutions, and hence verify the Onsager equation.

4. To determine the equivalent conductance of a weak electrolyte at infinite dilution using the Kohlraush law.

5. To determine the solubility of a sparingly soluble salt in water by conductance measurement.

6. To determine the basicity of an organic acid by conductometric measurement.
7. To determine the composition of a mixture of acetic acid and hydrochloric acid by conductometric titration.

8. To determine the degree of hydrolysis and hydrolysis constant of salts (e.g. CH₃COONa, NH₄Cl)

9. Determination of hydrolysis constant of aniline hydrochloride.

10. Titration of a solution of a salt of a weak base and strong acid, say NH₄Cl

(B) **Experiments based on Potentiometric and pH measurements:**

2. Titration of a mixture of HCl and CH₃COOH and hence the composition of the mixture.

3. Titration of a mixture of CH₃COOH and CH₃CoNa and to determine the dissociation constant of the acid.

4. To determine the ionization constants of a polybasic acid (H₃PO₄).

5. To determine the solubility and solubility Product of AgCl, AgBr and AgI.

6. To determine the hydrolysis constant of aniline hydrochloride.

7. Determine the composition of a given mixture containing KCl and KI.

8. Determination of acid, and basic dissociation constants of an amino acid, and hence the iso-electric point of the acid.

9. To determine the solubility product of silver halide (AgCl)
10. Determination of Ionic product of water.

(C) Experiments based on Kinetics:

1. To study the nature of salt effect on $S_2O_8^{2-}$-I reaction and conclude the nature of the species in the slow step.
2. To investigate the inversion of cane sugar in presence of an acid. Determine the energy of activation of the reaction.
3. To study the kinetics of hydrolysis of ethyl acetate by NaOH at two temperatures by conductance measurement, and hence the energy of activation of the reaction.
4. To study the kinetics of decomposition of the complex formed between sodium sulphide and sodium nitro prusside.
5. To study the inversion of cone sugar in presence of HCl and H$_2$SO$_4$ and hence determine the relative strength of the acids.
6. To investigate the autocatalytic reaction between potassium permanganate and oxalic acid.

(D) Experiments based on spectrophotometry

1. To determine the composition of binary mixture containing K$_2$Cr$_2$O$_7$ and KMnO$_4$ using a spectrophotometer.
2. Test the validity of Bear-Lambert’s law and determine the concentration of Glucose solution.
3. To determine the concentration of Metal ions by spectrophotometric titration with EDTA (Copper, Nickel and iron)

4. Determination of ionisation constant of bromophenol blue.

5. To determine phosphate concentration in a soft drink.

(E) Miscellaneous Experiments

1. Determination of partial molar volume of solute (KCl) and solvent in a binary mixture.

2. Determination of the temperature dependence of the solubility of a compound in two solvents having similar intermolecular interactions (benzoic acid in water and in DMSO water mixture) and calculate the partial molar heat of solution.

3. Determination of pKa of an indicator (methyl red) in (i) aqueous and (b) micellar media.

5. Estimation of Pb$^{2+}$ and Cd$^{2+}$/Zn$^{2+}$ and Ni$^{2+}$ by polarography.

7. Interdisciplinary Green chemistry experiment (should be performed where more than one special paper is being taught)
Preparation and characterization of Biodiesel from vegetable oils (Biodiesel may be prepared from different oils, catalysts and determination of their physical properties viz viscosity, surface tension, flash point)

(F) **Electronics:-**

This lab course will have theory as well as practical and the lectures shall be delivered during lab hours.

Basic Electronics:

Notations used in the electronic circuit, study of electronic compounds and colours codes, conversionis of chemical quantities into electronic quantities transducer, illustration with electrodes, thermocouples and thermistors.

Passive components;

Resistors capacitors and inductors with some emphasis on solid state properties of materials. Net works of resistors Thervenin’s theorem super position theorem loop analysis, R.C. circuits in NQR Spectroscopy, Mossbauer spectroscopy cyclic voltametry and in power suppliers as circuits.

Active Components :

Introduction to ordinary diodes and Zener diodes with some emphasis on p-n junction as a solid state property. Use of diodes as rectifiers clipping and clamping circuits power supplies.

Transistor:
An extension of p-n junction of pnp and npn transistors. Characteristics of transistors, hybrid parameter, transistor circuits as amplifiers, high impedance (preamplifier) circuits, darlington pairs differential amplifiers.

Operational Amplifiers

Ideal Characteristics; inverter, summer, integrator, differentiator, voltage follower, illustrative use of operational amplifiers. Introduction to Fourier transformation in instrumentation.

List of Experiments in Electronics

(Do at least five experiments from this section)

1. (a) To plot the diode characteristics and find its dynamic resistance and cut in voltage.
 (b) To plot the characteristics of a transistor used as a diode and compare the results with those of (a).

2. To implement a diode dipper circuit for the given transfer characteristics and verify the waveform.

3. To implement a diode damper circuit which damps the positive peak of the input voltage to (a) Zero voltage and (b) a given voltage. Verify the performance.

4. (a) To plot the characteristics of an NPN transistor in CE configuration, (b) To find the h-parameter of the transistor from the characteristics.
5. (a) To plot the characteristics of an NPN transistor in CB configuration. (b) To find the h-parameter of the transistor from the characteristics and compare it with the results of experiment No. 6

6. (a) To plot the drain and transfer characteristics of JFET in CS configuration, (b) To find out the pinch off voltage, maximum drain to source saturation current and the trans conductance.

7. To obtain the frequency response of an RC coupled amplifier and estimate the bandwidth.

8. (a) To plot the characteristics of Zener diode and find its dynamic resistance under reverse biased condition (b) To use zener diode for a. voltage regulation (i) Plot the line regulation curve, (ii) Plot the low regulation curve.

9. (a) To wire a half wave Rectifier circuit using diode and measure the rms voltage, de voltage and to find Ripple factor. (b) To study the performance of Half wave and full wave doubler circuits.

10. To plot characteristics of UJT and find the peak voltage, peak current and valley voltage and use as a relaxation.

Note: A Sheet containing 20 questions/diagrams/circuits will be provided to the students to reply. These questions based on basic electronics will cover both
theory and practicals as provided in the syllabi. They will be of objective type for duration of 20 minutes with maximum scoring of 10 marks.

Books Suggested:

1. *Inorganic Experiments*, J. Derek Woollins, VCH.
INSTRUCTIONS TO EXAMINERS

Five exercises are to be given, selecting one exercise from section A to D and fifth exercise is to be selected from section E or F.

<table>
<thead>
<tr>
<th>Marking Scheme Exercise</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise No. 1 (from Section A)</td>
<td>40</td>
</tr>
<tr>
<td>Exercise No. 2 (from Section B)</td>
<td>30</td>
</tr>
<tr>
<td>Exercise No. 3 (from Section C)</td>
<td>30</td>
</tr>
<tr>
<td>Exercise No. 4 (from Section D)</td>
<td>20</td>
</tr>
<tr>
<td>Exercise No. 5 (from Section E or F)</td>
<td>20</td>
</tr>
<tr>
<td>Viva</td>
<td>20</td>
</tr>
<tr>
<td>Record</td>
<td>15</td>
</tr>
<tr>
<td>Seminar & Project Work</td>
<td>25</td>
</tr>
</tbody>
</table>

TOTAL 200

Books Suggested:

1. Inorganic Experiments, J. Derek Woollins, VCH.

7. Small Scale Organic Preparations, P.J. Hill.

10. Findlay’s Practical Physical Chemistry, revised B.P. Levitt, Longman.

ANALYTICAL CHEMISTRY

MAX. MARKS: 200 TIME: 14 HRS.

(Including 25 marks for project) (Spread in two days)

(A) Analysis & Determinations (Marks 25 each)

(i) Determination of very weak acid eg. Vaniline, Isovaline, phenolic compounds etc.) using base (e.g. Lithium hydroxide, barium hydroxide etc.)

(ii) Study of Precipitation and/Complex formation reaction by drawing titration curve eg. silver salt with lithium chloride, ammonium sulphate with barium acetate, etc.
(iii) Determination of cations Iron (II) as or anions eg- chloride, dihydrogen phosphate.

(iv) Determination of free acid in solution of metal salt (e.g. sulphuric acid/in aluminium sulphate, Perchloric acid in uranyl perchlorate)

(B) **Potentiometric/pH Metric method:**

(i) Determinations of metal-ions, eg. Iron (ii), Copper (ii), Chromate (ii), Manganese (ii) in pyrolusite/steel etc.

(ii) Determination of metal-ion eg. Calcium (II), Nickel (II) Cobalt (II), Zinc (II) etc.

(C) **Polaragrophic Method:**

(i) Determination of half wave potential & metal ions eg. Cadmium (II), Mercury (II), Copper (II) etc.

(ii) Determination of metal-ions, eg. Cadmium (II), Mercury (II), Copper (II) etc, using wave height concentration cell or standard addition.

(iii) Investigation of the influence of dissolved oxygen.

(iv) Determination of lead and copper in steel.

(D) **Amperometric Method**

(i) Determination of lead with std. potassium dichromate solution

(ii) Determination Nickel (ii) with dimethyl glyoxime.

(iii) Determination of Zinc with EDTA
(iv) Determination of water content of salt hydrate

(E) **Chromatographic Separation**

(i) Separation of Zinc(II) & Magnesium (II) on an Ion exchanger.

(ii) Separation of chloride & bromide on an Ion exchanger.

(iii) Separation & recovery of dyes (eg. bromophenol blue, Congo red, phenol red) using TLC.

(iv) Separation of artificial colorant in confectionery by TLC

(F) **Solvent Extraction:**

(i) Separation & determination of Copper (II) as diethyldithio carbamate complex.

(ii) Separation & Determination of Copper (II) as Neocuproin complex.

(iii) Separation & determination of Iron (II) as 8-hydroxy quinolate.

(G) **Spectrophometric Determination.**

(i) Determination of Boron/Chromium/Titanium/tungsten in steel.

(ii) Simultaneous determination- Chromium (II) & Manganese (II).

(iii) Determination of active constituents in a medicine by derivative spectroscopy e.g. two drugs pseudoephedrine hydrochloride and tcirolidine hydrochloride in “Actified” a medical preparation.

(iv) Determination of cholesterol.

(H) **Other methods -**
(i) Thermal analysis - Thermal composition of calcium oxalate, copper sulfate, calcium sulfate, hydrate.

(ii) Electro Gravimetric analysis- Separation & determination of nickel & carbonate.

(iii) Atomic absorption spectroscopy- Determination of zinc & copper

(iv) Flame photometry - Determination of sodium, calcium, magnesium & potassium.

(v) IR Spectro photometry- Sample preparation, Identification of functional groups.

Spotting

In spotting there should be 5 spots related with instruments and techniques as per syllabus; time of spotting is 20 minutes and a separate copy shall be used for the purpose

INSTRUCTIONS TO EXAMINERS

Five exercises are to be given in examination, selecting not more than one exercise from A to H.

Marking Scheme

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise No. 1</td>
<td>25</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
</tr>
<tr>
<td>Exercise No. 2</td>
<td>25</td>
</tr>
<tr>
<td>Exercise No. 3</td>
<td>25</td>
</tr>
<tr>
<td>Exercise No. 4</td>
<td>25</td>
</tr>
<tr>
<td>Exercise No. 5</td>
<td>30</td>
</tr>
<tr>
<td>Spotting</td>
<td>10</td>
</tr>
<tr>
<td>Viva</td>
<td>20</td>
</tr>
<tr>
<td>Record</td>
<td>15</td>
</tr>
<tr>
<td>Seminar & Project Works</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
</tr>
</tbody>
</table>

Note: Head of the department will award the project work & seminar marks & will hand over it to the board of examiners.